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Abstract—Fujitsu’s A64FX has been the first Arm-based pro-
cessor to power a top-ranked supercomputer, challenging the
dominance that x86 processors have held in high-performance
computing (HPC). While x86 processors and their software
ecosystems have been extensively characterized, the performance
and efficiency behavior of Arm-based alternatives, like the
A64FX, remains less well explored, limiting broader adoption.

This work methodically characterizes the performance and
power efficiency of the A64FX processor running a variety of
genome sequence analysis workloads compiled with the GNU
Compiler Collection (GCC). We compare A64FX against an Intel
Xeon Gold 5318N processor. While Skylake demonstrates higher
single-thread performance, A64FX matches or exceeds perfor-
mance in multi-threaded scenarios due to its high-bandwidth
memory. Additionally, as genome sequence analysis workloads
only target the Arm NEON ISA extension, there are unveiled
opportunities to further improve performance using the Scal-
able Vector Extension (SVE) ISA extension. We implement in-
house SVE-based algorithms for all the evaluated algorithms
which demonstrate 2.1× better performance compared to their
AVX512-based counter versions.

I. INTRODUCTION

The decreasing cost and increasing throughput of genome
sequencing technologies, along with the availability of com-
plete genomes for humans and other species, have enabled
rapid advances in personalized medicine [1]–[3], evolutionary
biology [4], [5], and forensics [6], [7]. At the core of these
applications lies genome sequence analysis, where sequences
are compared to extract key genetic insights —ranging from
identifying disease-causing mutations [8], and computing sim-
ilarity across large datasets for phylogenetic studies [9].

Modern genome analysis relies primarily on two algorithmic
families: sequence alignment and edit distance approximation.
These algorithms receive as input reads —short fragments
of DNA or RNA sequences obtained from high-throughput
sequencing machines. Reads are typically aligned or compared
against reference genomes or other sequences to identify
genetic variations, detect mutations, or reconstruct longer
genomic regions, making their efficient execution critical for
many genomic applications. These algorithms, particularly
when applied to the increasing volume and length of sequenc-
ing data, pose significant computational challenges due to their
intensive dynamic programming workloads.

To meet growing performance and energy-efficiency de-
mands, recent genomic computing platforms are embracing

hardware-software co-design and advanced instruction set
architectures. One prominent example is Fujitsu’s A64FX
processor, the first Arm-based CPU to power a top-ranked
supercomputer. Designed with high memory bandwidth and
Scalable Vector Extension (SVE) support, A64FX offers a
compelling platform for accelerating genomics workloads that
exhibit high data-level parallelism.

In this paper, we explore the performance of the Arm
ecosystem for genome sequence analysis by evaluating widely-
used sequence alignment and edit distance algorithms on
the A64FX processor. Using the GNU Compiler Collection
(GCC), we investigate how effectively current toolchains
support parallelism and vectorization, and compare A64FX’s
performance and efficiency to a baseline server class x86
system. Our analysis demonstrates that the A64FX system
provides better performance scalability in multi-threaded sce-
narios thanks to its high-bandwidth memory (HBM). Addi-
tionally, the A64FX provides 2.1× better performance than
AVX512 implementations when using the SVE ISA.

II. EXPERIMENTAL ENVIRONMENT

A. CPU Hardware Platforms

Our evaluation platforms consist of a Fujitsu A64FX proces-
sor with 48 cores and 32GB HBM2 [10] (referred as a64fx in
Section III), and a server class Intel Xeon Gold 5318N with 24
(48) cores (threads) processor [11] (Cascade Lake architecture)
with 192GB DDR4-2667 (referred as Xeon in Section III).

B. Benchmarks

Use case 1: Modern read aligners. For this use case,
Wavefront Alignment (WFA) [12] and Bidirectional Wavefront
Alignment (BiWFA) [13] algorithms, two recently proposed
DP algorithms that run in O(n ∗ s) time, where n is the se-
quence length and s the error (or score) between the sequences.
We use the best-performing configurations reported by Marco-
Sola et al. [14], [15].

Use case 2: Edit distance approximation. We use the state-
of-the-art edit distance approximation technique SneakyS-
nake (SS) [16]. SS filters the input reads to skip the alignment
of those inputs that exceed a defined edit distance threshold pa-
rameter. We used the best performing configurations reported
by Alser et al. [17]



Use case 3: End-to-end framework. In this use case, we
use minimap2 [18], [19], an end-to-end tool designed to map
reads to large reference genomes. Minimap2 includes multiple
algorithms such as seeding, chaining and alignment.

C. Datasets

For use cases 1 and 2, the evaluated datasets range from 100
base pairs (bp) to 30K base pairs. We use two real datasets
(100bp_1, 250bp_1) and two simulated datasets (10Kbp and
30Kbp). Table I summarizes the main characteristics of the
evaluated datasets. For the 100bp_1, 250bp_1 and 10Kbp, we
use the datasets available in the SneakySnake repository [17].
We generate the 30Kbp dataset following the same methodol-
ogy as SneakySnake [16]. The 100bp_1 and 250bp_1 datasets
are representative of the newest short-read technologies avail-
able in the market, ranging from the Ilumina iSeq100 which
generates 100bp to the Illumina Next Generation Sequencing
(NGS) that generates 300bp [20]–[22]. The 10Kbp and 30Kbp
datasets are representative of long-read technologies such as
PacBio that released a new HiFi technology that generates
long-read in the range of 10K - 30K base pairs [22]–[24].

For use case 3, we use the reference and long input
sequences provided by the minimap cookbook repository [25].
We evaluate the end-to-end execution of minimap2 going from
index creation, through seeding and sequence alignment.

TABLE I
INPUT DATASET CHARACTERISTICS.

Dataset Read Length No. of Pairs Dataset Size

100bp_1 100 30M 6GB
250bp_1 250 30M 14GB
10Kbp 10,000 100K 2GB
30Kbp 30,000 100K 6GB

D. Experiments

Scalability. In each experiment, we utilize up to 24 threads,
pinning each thread to a dedicated core. To evaluate scalability,
we begin with a single thread and increment the thread count
in steps of four, up to the maximum of 24 threads —corre-
sponding to the total number of physical cores available on
the Xeon Gold 5318N CPU.

Vectorization. All evaluated benchmarks include optimized
implementations that leverage the SIMD capabilities of both
x86 [26] and Arm CPUs [27]. For x86, all benchmarks are
optimized using AVX-512 instructions. For Arm, NEON-based
implementations are included in the evaluated benchmarks.
However, the A64FX processor supports the SVE ISA, which
introduces advanced features such as predication —particu-
larly well-suited for genome sequence analysis and capable
of delivering further performance gains. In Section III-B,
we evaluate the performance impact of incorporating SVE
optimizations across all benchmarks.

III. EVALUATION

A. Performance comparison and scalability analysis

Modern sequence aligners: Fig. 1 depicts de performance
results for modern read aligners. We make four observations:
(i) At 1 thread, the Xeon Gold 5318N outperforms the
A64FX across all configurations. On average, Xeon outper-
forms to a64fx by 2.2× and 2.1× for WFA and BiWFA,
respectively. This performance results are mainly by Xeon’s
more aggressive out-of-order execution. (ii) Although Xeon
initially scales well, its throughput gains diminish beyond 16
threads. For instance, in WFA-short, the jump from 16 to 24
threads yields only 25% improvement due to the system
becoming bottlenecked by memory bandwidth and NUMA
overheads. (iii) a64fx scales almost linearly across all thread
counts, particularly in BiWFA-long. From 1 to 24 threads,
throughput increases by over 22×. This behavior is driven
by its high-bandwidth HBM2 memory and highly parallelize
cache hierarchy. (iv) In long-read scenarios, a64fx outperforms
Xeon at high thread counts. On average, a64fx outperforms
Xeon by 1.2× and 1.1× for WFA and BiWFA, respectively,
for the 24 threads experiments. The memory and cache-bound
nature of long-read alignments benefit from a64fx’s superior
memory bandwidth and parallelism.
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Fig. 1. Read aligners throughput results using short and long reads input
datasets. Results are reported on a logarithmic scale.

Edit distance approximation: Fig. 2 shows the throughput
results for edit distance experiments. We make two observa-
tions: (i) SS shows similar architectural trends as WFA and
BiWFA. Xeon leads in single-thread performance for both
short and long reads due to its stronger per-core throughput,
but a64fx scales more effectively across threads with com-
parable throughput at 20 and 24 threads. (ii) The number of
input sequences filtered by each thread can vary significantly,
leading to workload imbalance. Since SS does not incorpo-
rate any software-level workload balancing mechanisms, the
performance scalability on both hardware platforms tends to
plateau beyond 12 threads. Nevertheless, as shown in Sec-
tion III-B, fine-tuning SS for the SVE ISA yields substantial
performance improvements despite this limitation.

End-to-end scalability analysis: Fig 3.a depicts the per-
formance results for minimap2. Results are normalized to the
a64fx single thread performance. We make two observations:
(i) Similar to use cases 1 and 2, Xeon exhibits limited
performance scalability as the number of threads increases. (ii)
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Fig. 2. Edit distance throughput results using short and long reads input
datasets. Results are reported on a logarithmic scale.

Minimap2 is an end-to-end genome sequence analysis tool that
integrates multiple algorithms, among which seeding is one of
the most critical, as it dominates overall execution time [28],
[29]. Seeding involves mapping input reads to a reference
genome —a highly parallelizable operation. Consequently, a
highly parallel system like the a64fx delivers notable perfor-
mance advantages. On average, a64fx outperforms Xeon by
1.1×, 1.2×, and 1.2× for 16, 20, and 24 threads, respectively.
These results emphasize the a64fx’s effectiveness for parallel
and memory-intensive genome sequence analysis workloads.
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Fig. 3. Performance results for minimap2 [18] and SVE-based vectorization.
Results for minimap2 are normalized to the single-thread A64FX performance.
For SVE-based vectorization, results are normalized to the A64FX 24 threads
performance of each algorithm.

B. Impact of vectorization

As mentioned in Section II-D, the evaluated benchmarks
currently do not support the Arm SVE ISA, which offers
several key features that could significantly enhance the per-
formance of these workloads.

In this section, we evaluate the performance impact of the
Arm SVE ISA on genome sequence analysis. To this end, we
implemented in-house versions of the benchmarks using SVE
intrinsics, using the NEON-based algorithms as a baseline.
We (i) replaced NEON instructions with their corresponding
SVE instructions and (ii) improved vectorization by leveraging
the predication capabilities of the SVE ISA. Fig. 3.b shows
the performance results obtained. In these experiments, we
used 24 threads on the a64fx for both NEON and SVE-based
implementations.

On average, SVE-based implementations outperform
NEON-based ones by 2.1×. This significant performance
improvement is primarily due to the advanced features of SVE,

especially its predication capabilities. Unlike NEON, which re-
quires separate conditional instructions to handle masking and
branching, SVE supports predicated execution directly within
vector operations. This reduces the need for additional control
flow instructions, simplifying the code and minimizing costly
branching. Furthermore, the larger vector length available in
the a64fx architecture allows for better memory bandwidth
utilization and more efficient data processing. The combina-
tion of these features —predication, reduced code complexity
and larger vector length —enables SVE-based algorithms to
outperform NEON-based implementations, leading to more
efficient execution overall.

IV. CONCLUSION

This work evaluates the performance and scalability of
the Arm A64FX processors for bioinformatics workloads
compared to a server class Intel Xeon processor. Our findings
highlight that while the Xeon processor excels in single-thread
performance due to higher per-core power, it encounters limi-
tations in multi-threaded scenarios due to memory bandwidth
constraints. In contrast, the A64FX outperforms the Xeon in
multi-threaded performance, showcasing superior scalability
and efficiency, especially in memory-intensive tasks. Notably,
the A64FX’s HBM2, its highly-parallel cache hierarchy and
its ability to scale effectively across multiple threads make it
ideal for large-scale genomic analysis tasks, as evidenced in
the minimap2 pipeline.

The study also emphasizes the importance of optimizing
code for the SVE ISA, which significantly boosts perfor-
mance in bioinformatics applications. Optimizations using
SVE, demonstrated an average improvement of 2.1×, under-
scoring the potential of SVE to enhance processing efficiency
in data-intensive applications. As bioinformatics workloads
increasingly rely on parallelism and memory efficiency, the
A64FX, with its advanced vectorization and parallel process-
ing capabilities, presents a promising platform for the future.
Future work will explore further optimizations of bioinformat-
ics pipelines and the potential of Arm’s Neoverse processors.
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